Enum polars_lazy::dsl::Expr
source · pub enum Expr {
Show 24 variants
Alias(Box<Expr, Global>, Arc<str>),
Column(Arc<str>),
Columns(Vec<String, Global>),
DtypeColumn(Vec<DataType, Global>),
Literal(LiteralValue),
BinaryExpr {
left: Box<Expr, Global>,
op: Operator,
right: Box<Expr, Global>,
},
Cast {
expr: Box<Expr, Global>,
data_type: DataType,
strict: bool,
},
Sort {
expr: Box<Expr, Global>,
options: SortOptions,
},
Take {
expr: Box<Expr, Global>,
idx: Box<Expr, Global>,
},
SortBy {
expr: Box<Expr, Global>,
by: Vec<Expr, Global>,
reverse: Vec<bool, Global>,
},
Agg(AggExpr),
Ternary {
predicate: Box<Expr, Global>,
truthy: Box<Expr, Global>,
falsy: Box<Expr, Global>,
},
Function {
input: Vec<Expr, Global>,
function: FunctionExpr,
options: FunctionOptions,
},
Explode(Box<Expr, Global>),
Filter {
input: Box<Expr, Global>,
by: Box<Expr, Global>,
},
Window {
function: Box<Expr, Global>,
partition_by: Vec<Expr, Global>,
order_by: Option<Box<Expr, Global>>,
options: WindowOptions,
},
Wildcard,
Slice {
input: Box<Expr, Global>,
offset: Box<Expr, Global>,
length: Box<Expr, Global>,
},
Exclude(Box<Expr, Global>, Vec<Excluded, Global>),
KeepName(Box<Expr, Global>),
Count,
Nth(i64),
RenameAlias {
function: SpecialEq<Arc<dyn RenameAliasFn + 'static>>,
expr: Box<Expr, Global>,
},
AnonymousFunction {
input: Vec<Expr, Global>,
function: SpecialEq<Arc<dyn SeriesUdf + 'static>>,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>,
options: FunctionOptions,
},
}
Expand description
Queries consists of multiple expressions.
Variants§
Alias(Box<Expr, Global>, Arc<str>)
Column(Arc<str>)
Columns(Vec<String, Global>)
DtypeColumn(Vec<DataType, Global>)
Literal(LiteralValue)
BinaryExpr
Cast
Sort
Take
SortBy
Agg(AggExpr)
Ternary
A ternary operation if true then “foo” else “bar”
Function
Explode(Box<Expr, Global>)
Filter
Window
Fields
options: WindowOptions
See postgres window functions
Wildcard
Slice
Fields
Exclude(Box<Expr, Global>, Vec<Excluded, Global>)
Can be used in a select statement to exclude a column from selection
KeepName(Box<Expr, Global>)
Set root name as Alias
Count
Special case that does not need columns
Nth(i64)
Take the nth column in the DataFrame
RenameAlias
AnonymousFunction
Implementations§
source§impl Expr
impl Expr
sourcepub fn to_dot(&self) -> Result<String, PolarsError>
pub fn to_dot(&self) -> Result<String, PolarsError>
Get a dot language representation of the Expression.
source§impl Expr
impl Expr
sourcepub fn eq<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
pub fn eq<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
Compare Expr
with other Expr
on equality
sourcepub fn neq<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
pub fn neq<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
Compare Expr
with other Expr
on non-equality
sourcepub fn is_not_null(self) -> Expr
pub fn is_not_null(self) -> Expr
Run is_not_null operation on Expr
.
sourcepub fn drop_nulls(self) -> Expr
pub fn drop_nulls(self) -> Expr
Drop null values
sourcepub fn quantile(self, quantile: Expr, interpol: QuantileInterpolOptions) -> Expr
pub fn quantile(self, quantile: Expr, interpol: QuantileInterpolOptions) -> Expr
Compute the quantile per group.
sourcepub fn agg_groups(self) -> Expr
pub fn agg_groups(self) -> Expr
Get the group indexes of the group by operation.
sourcepub fn slice<E, F>(self, offset: E, length: F) -> Exprwhere
E: Into<Expr>,
F: Into<Expr>,
pub fn slice<E, F>(self, offset: E, length: F) -> Exprwhere
E: Into<Expr>,
F: Into<Expr>,
Slice the Series.
offset
may be negative.
sourcepub fn append<E>(self, other: E, upcast: bool) -> Exprwhere
E: Into<Expr>,
pub fn append<E>(self, other: E, upcast: bool) -> Exprwhere
E: Into<Expr>,
Append expressions. This is done by adding the chunks of other
to this Series
.
sourcepub fn unique_stable(self) -> Expr
pub fn unique_stable(self) -> Expr
Get unique values of this expression, while maintaining order.
This requires more work than Expr::unique
.
sourcepub fn arg_unique(self) -> Expr
pub fn arg_unique(self) -> Expr
Get the first index of unique values of this expression.
sourcepub fn arg_sort(self, sort_options: SortOptions) -> Expr
pub fn arg_sort(self, sort_options: SortOptions) -> Expr
Get the index values that would sort this expression.
sourcepub fn strict_cast(self, data_type: DataType) -> Expr
pub fn strict_cast(self, data_type: DataType) -> Expr
Cast expression to another data type. Throws an error if conversion had overflows
sourcepub fn sort(self, reverse: bool) -> Expr
pub fn sort(self, reverse: bool) -> Expr
Sort in increasing order. See the eager implementation.
sourcepub fn sort_with(self, options: SortOptions) -> Expr
pub fn sort_with(self, options: SortOptions) -> Expr
Sort with given options.
sourcepub fn map<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
pub fn map<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
Apply a function/closure once the logical plan get executed.
This function is very similar to Expr::apply
, but differs in how it handles aggregations.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.
It is the responsibility of the caller that the schema is correct by giving the correct output_type. If None given the output type of the input expr is used.
sourcepub fn map_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(&mut [Series]) -> Result<Series, PolarsError> + Send + Sync,
pub fn map_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(&mut [Series]) -> Result<Series, PolarsError> + Send + Sync,
sourcepub fn map_list<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
pub fn map_list<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
Apply a function/closure once the logical plan get executed.
This function is very similar to apply, but differs in how it handles aggregations.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.map_list
should be used when the function expects a list aggregated series.
sourcepub fn function_with_options<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>,
options: FunctionOptions
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
pub fn function_with_options<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>,
options: FunctionOptions
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
A function that cannot be expressed with map
or apply
and requires extra settings.
sourcepub fn apply<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
pub fn apply<F>(
self,
function: F,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(Series) -> Result<Series, PolarsError> + Send + Sync,
Apply a function/closure over the groups. This should only be used in a groupby aggregation.
It is the responsibility of the caller that the schema is correct by giving the correct output_type. If None given the output type of the input expr is used.
This difference with map is that apply
will create a separate Series
per group.
map
should be used for operations that are independent of groups, e.g.multiply * 2
, orraise to the power
apply
should be used for operations that work on a group of data. e.g.sum
,count
, etc.
sourcepub fn apply_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(&mut [Series]) -> Result<Series, PolarsError> + Send + Sync,
pub fn apply_many<F>(
self,
function: F,
arguments: &[Expr],
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>
) -> Exprwhere
F: 'static + Fn(&mut [Series]) -> Result<Series, PolarsError> + Send + Sync,
Apply a function/closure over the groups with many arguments. This should only be used in a groupby aggregation.
See the Expr::apply
function for the differences between map
and apply
.
pub fn apply_many_private(
self,
function_expr: FunctionExpr,
arguments: &[Expr],
auto_explode: bool,
cast_to_supertypes: bool
) -> Expr
pub fn map_many_private(
self,
function_expr: FunctionExpr,
arguments: &[Expr],
cast_to_supertypes: bool
) -> Expr
sourcepub fn is_infinite(self) -> Expr
pub fn is_infinite(self) -> Expr
Get mask of infinite values if dtype is Float
sourcepub fn is_not_nan(self) -> Expr
pub fn is_not_nan(self) -> Expr
Get inverse mask of NaN values if dtype is Float
sourcepub fn shift(self, periods: i64) -> Expr
pub fn shift(self, periods: i64) -> Expr
Shift the values in the array by some period. See the eager implementation.
sourcepub fn shift_and_fill<E>(self, periods: i64, fill_value: E) -> Exprwhere
E: Into<Expr>,
pub fn shift_and_fill<E>(self, periods: i64, fill_value: E) -> Exprwhere
E: Into<Expr>,
Shift the values in the array by some period and fill the resulting empty values.
sourcepub fn cumsum(self, reverse: bool) -> Expr
pub fn cumsum(self, reverse: bool) -> Expr
Get an array with the cumulative sum computed at every element
sourcepub fn cumprod(self, reverse: bool) -> Expr
pub fn cumprod(self, reverse: bool) -> Expr
Get an array with the cumulative product computed at every element
sourcepub fn cummin(self, reverse: bool) -> Expr
pub fn cummin(self, reverse: bool) -> Expr
Get an array with the cumulative min computed at every element
sourcepub fn cummax(self, reverse: bool) -> Expr
pub fn cummax(self, reverse: bool) -> Expr
Get an array with the cumulative max computed at every element
sourcepub fn backward_fill(self, limit: Option<u32>) -> Expr
pub fn backward_fill(self, limit: Option<u32>) -> Expr
Fill missing value with next non-null.
sourcepub fn forward_fill(self, limit: Option<u32>) -> Expr
pub fn forward_fill(self, limit: Option<u32>) -> Expr
Fill missing value with previous non-null.
sourcepub fn round(self, decimals: u32) -> Expr
Available on crate feature round_series
only.
pub fn round(self, decimals: u32) -> Expr
round_series
only.Round underlying floating point array to given decimal numbers.
sourcepub fn floor(self) -> Expr
Available on crate feature round_series
only.
pub fn floor(self) -> Expr
round_series
only.Floor underlying floating point array to the lowest integers smaller or equal to the float value.
sourcepub fn ceil(self) -> Expr
Available on crate feature round_series
only.
pub fn ceil(self) -> Expr
round_series
only.Ceil underlying floating point array to the highest integers smaller or equal to the float value.
sourcepub fn clip(self, min: AnyValue<'_>, max: AnyValue<'_>) -> Expr
Available on crate feature round_series
only.
pub fn clip(self, min: AnyValue<'_>, max: AnyValue<'_>) -> Expr
round_series
only.Clip underlying values to a set boundary.
sourcepub fn clip_max(self, max: AnyValue<'_>) -> Expr
Available on crate feature round_series
only.
pub fn clip_max(self, max: AnyValue<'_>) -> Expr
round_series
only.Clip underlying values to a set boundary.
sourcepub fn clip_min(self, min: AnyValue<'_>) -> Expr
Available on crate feature round_series
only.
pub fn clip_min(self, min: AnyValue<'_>) -> Expr
round_series
only.Clip underlying values to a set boundary.
sourcepub fn abs(self) -> Expr
Available on crate feature abs
only.
pub fn abs(self) -> Expr
abs
only.Convert all values to their absolute/positive value.
sourcepub fn over<E, IE>(self, partition_by: E) -> Exprwhere
E: AsRef<[IE]>,
IE: Into<Expr> + Clone,
pub fn over<E, IE>(self, partition_by: E) -> Exprwhere
E: AsRef<[IE]>,
IE: Into<Expr> + Clone,
Apply window function over a subgroup. This is similar to a groupby + aggregation + self join. Or similar to window functions in Postgres.
Example
#[macro_use] extern crate polars_core;
use polars_core::prelude::*;
use polars_lazy::prelude::*;
fn example() -> PolarsResult<()> {
let df = df! {
"groups" => &[1, 1, 2, 2, 1, 2, 3, 3, 1],
"values" => &[1, 2, 3, 4, 5, 6, 7, 8, 8]
}?;
let out = df
.lazy()
.select(&[
col("groups"),
sum("values").over([col("groups")]),
])
.collect()?;
dbg!(&out);
Ok(())
}
Outputs:
╭────────┬────────╮
│ groups ┆ values │
│ --- ┆ --- │
│ i32 ┆ i32 │
╞════════╪════════╡
│ 1 ┆ 16 │
│ 1 ┆ 16 │
│ 2 ┆ 13 │
│ 2 ┆ 13 │
│ ... ┆ ... │
│ 1 ┆ 16 │
│ 2 ┆ 13 │
│ 3 ┆ 15 │
│ 3 ┆ 15 │
│ 1 ┆ 16 │
╰────────┴────────╯
sourcepub fn fill_null<E>(self, fill_value: E) -> Exprwhere
E: Into<Expr>,
pub fn fill_null<E>(self, fill_value: E) -> Exprwhere
E: Into<Expr>,
Replace the null values by a value.
sourcepub fn fill_nan<E>(self, fill_value: E) -> Exprwhere
E: Into<Expr>,
pub fn fill_nan<E>(self, fill_value: E) -> Exprwhere
E: Into<Expr>,
Replace the floating point NaN
values by a value.
sourcepub fn count(self) -> Expr
pub fn count(self) -> Expr
Count the values of the Series or Get counts of the group by operation.
sourcepub fn is_duplicated(self) -> Expr
pub fn is_duplicated(self) -> Expr
Get a mask of duplicated values
pub fn xor<E>(self, expr: E) -> Exprwhere
E: Into<Expr>,
sourcepub fn pow<E>(self, exponent: E) -> Exprwhere
E: Into<Expr>,
pub fn pow<E>(self, exponent: E) -> Exprwhere
E: Into<Expr>,
Raise expression to the power exponent
sourcepub fn filter<E>(self, predicate: E) -> Exprwhere
E: Into<Expr>,
pub fn filter<E>(self, predicate: E) -> Exprwhere
E: Into<Expr>,
Filter a single column Should be used in aggregation context. If you want to filter on a DataFrame level, use LazyFrame::filter
sourcepub fn is_in<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
Available on crate feature is_in
only.
pub fn is_in<E>(self, other: E) -> Exprwhere
E: Into<Expr>,
is_in
only.Check if the values of the left expression are in the lists of the right expr.
sourcepub fn sort_by<E, IE, R>(self, by: E, reverse: R) -> Exprwhere
E: AsRef<[IE]>,
IE: Into<Expr> + Clone,
R: AsRef<[bool]>,
pub fn sort_by<E, IE, R>(self, by: E, reverse: R) -> Exprwhere
E: AsRef<[IE]>,
IE: Into<Expr> + Clone,
R: AsRef<[bool]>,
Sort this column by the ordering of another column. Can also be used in a groupby context to sort the groups.
sourcepub fn repeat_by<E>(self, by: E) -> Exprwhere
E: Into<Expr>,
Available on crate feature repeat_by
only.
pub fn repeat_by<E>(self, by: E) -> Exprwhere
E: Into<Expr>,
repeat_by
only.Repeat the column n
times, where n
is determined by the values in by
.
This yields an Expr
of dtype List
sourcepub fn is_first(self) -> Expr
Available on crate feature is_first
only.
pub fn is_first(self) -> Expr
is_first
only.Get a mask of the first unique value.
sourcepub fn mode(self) -> Expr
Available on crate feature mode
only.
pub fn mode(self) -> Expr
mode
only.Compute the mode(s) of this column. This is the most occurring value.
sourcepub fn keep_name(self) -> Expr
pub fn keep_name(self) -> Expr
Keep the original root name
use polars_core::prelude::*;
use polars_lazy::prelude::*;
fn example(df: LazyFrame) -> LazyFrame {
df.select([
// even thought the alias yields a different column name,
// `keep_name` will make sure that the original column name is used
col("*").alias("foo").keep_name()
])
}
sourcepub fn map_alias<F>(self, function: F) -> Exprwhere
F: 'static + Fn(&str) -> Result<String, PolarsError> + Send + Sync,
pub fn map_alias<F>(self, function: F) -> Exprwhere
F: 'static + Fn(&str) -> Result<String, PolarsError> + Send + Sync,
Define an alias by mapping a function over the original root column name.
sourcepub fn exclude(self, columns: impl IntoVec<String>) -> Expr
pub fn exclude(self, columns: impl IntoVec<String>) -> Expr
Exclude a column from a wildcard/regex selection.
You may also use regexes in the exclude as long as they start with ^
and end with $
/
Example
use polars_core::prelude::*;
use polars_lazy::prelude::*;
// Select all columns except foo.
fn example(df: DataFrame) -> LazyFrame {
df.lazy()
.select(&[
col("*").exclude(&["foo"])
])
}
pub fn exclude_dtype<D>(self, dtypes: D) -> Exprwhere
D: AsRef<[DataType]>,
pub fn interpolate(self, method: InterpolationMethod) -> Expr
interpolate
only.sourcepub fn rolling_min(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_min(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling min See: [ChunkedArray::rolling_min]
sourcepub fn rolling_max(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_max(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling max See: [ChunkedArray::rolling_max]
sourcepub fn rolling_mean(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_mean(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling mean See: [ChunkedArray::rolling_mean]
sourcepub fn rolling_sum(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_sum(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling sum See: [ChunkedArray::rolling_sum]
sourcepub fn rolling_median(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_median(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling median See:
[ChunkedArray::rolling_median
]
sourcepub fn rolling_quantile(
self,
quantile: f64,
interpolation: QuantileInterpolOptions,
options: RollingOptions
) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_quantile(
self,
quantile: f64,
interpolation: QuantileInterpolOptions,
options: RollingOptions
) -> Expr
rolling_window
only.Apply a rolling quantile See:
[ChunkedArray::rolling_quantile
]
sourcepub fn rolling_var(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_var(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling variance
sourcepub fn rolling_std(self, options: RollingOptions) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_std(self, options: RollingOptions) -> Expr
rolling_window
only.Apply a rolling std-dev
sourcepub fn rolling_apply(
self,
f: Arc<dyn Fn(&Series) -> Series + Send + Sync + 'static>,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>,
options: RollingOptionsFixedWindow
) -> Expr
Available on crate feature rolling_window
only.
pub fn rolling_apply(
self,
f: Arc<dyn Fn(&Series) -> Series + Send + Sync + 'static>,
output_type: SpecialEq<Arc<dyn FunctionOutputField + 'static>>,
options: RollingOptionsFixedWindow
) -> Expr
rolling_window
only.Apply a custom function over a rolling/ moving window of the array. This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.
sourcepub fn rolling_apply_float<F>(self, window_size: usize, f: F) -> Exprwhere
F: 'static + FnMut(&mut ChunkedArray<Float64Type>) -> Option<f64> + Send + Sync + Copy,
Available on crate feature rolling_window
only.
pub fn rolling_apply_float<F>(self, window_size: usize, f: F) -> Exprwhere
F: 'static + FnMut(&mut ChunkedArray<Float64Type>) -> Option<f64> + Send + Sync + Copy,
rolling_window
only.Apply a custom function over a rolling/ moving window of the array. Prefer this over rolling_apply in case of floating point numbers as this is faster. This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.
pub fn rank(self, options: RankOptions) -> Expr
rank
only.pub fn diff(self, n: usize, null_behavior: NullBehavior) -> Expr
diff
only.sourcepub fn upper_bound(self) -> Expr
pub fn upper_bound(self) -> Expr
Get maximal value that could be hold by this dtype.
sourcepub fn lower_bound(self) -> Expr
pub fn lower_bound(self) -> Expr
Get minimal value that could be hold by this dtype.
pub fn reshape(self, dims: &[i64]) -> Expr
pub fn shuffle(self, seed: Option<u64>) -> Expr
random
only.pub fn sample_n(
self,
n: usize,
with_replacement: bool,
shuffle: bool,
seed: Option<u64>
) -> Expr
random
only.pub fn sample_frac(
self,
frac: f64,
with_replacement: bool,
shuffle: bool,
seed: Option<u64>
) -> Expr
random
only.sourcepub fn shrink_dtype(self) -> Expr
pub fn shrink_dtype(self) -> Expr
Shrink numeric columns to the minimal required datatype
needed to fit the extrema of this Series
.
This can be used to reduce memory pressure.
sourcepub fn value_counts(self, multithreaded: bool, sorted: bool) -> Expr
Available on crate feature dtype-struct
only.
pub fn value_counts(self, multithreaded: bool, sorted: bool) -> Expr
dtype-struct
only.Count all unique values and create a struct mapping value to count Note that it is better to turn multithreaded off in the aggregation context
sourcepub fn null_count(self) -> Expr
pub fn null_count(self) -> Expr
Get the null count of the column/group
sourcepub fn set_sorted_flag(self, sorted: IsSorted) -> Expr
pub fn set_sorted_flag(self, sorted: IsSorted) -> Expr
Set this Series
as sorted
so that downstream code can use
fast paths for sorted arrays.
Warning
This can lead to incorrect results if this Series
is not sorted!!
Use with care!
pub fn str(self) -> StringNameSpace
strings
only.pub fn binary(self) -> BinaryNameSpace
dtype-binary
only.pub fn dt(self) -> DateLikeNameSpace
temporal
only.pub fn arr(self) -> ListNameSpace
pub fn cat(self) -> CategoricalNameSpace
dtype-categorical
only.pub fn struct_(self) -> StructNameSpace
dtype-struct
only.Trait Implementations§
source§impl ExprEvalExtension for Expr
Available on crate feature cumulative_eval
only.
impl ExprEvalExtension for Expr
cumulative_eval
only.source§impl<'a> IntoIterator for &'a Expr
impl<'a> IntoIterator for &'a Expr
source§impl PartialEq<Expr> for Expr
impl PartialEq<Expr> for Expr
impl Eq for Expr
impl StructuralPartialEq for Expr
Auto Trait Implementations§
impl !RefUnwindSafe for Expr
impl Send for Expr
impl Sync for Expr
impl Unpin for Expr
impl !UnwindSafe for Expr
Blanket Implementations§
source§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.