1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
use std::cmp::Ordering;

use polars_arrow::trusted_len::TrustedLen;
use polars_arrow::utils::CustomIterTools;
use polars_core::export::rayon::prelude::*;
use polars_core::prelude::*;
use polars_core::utils::_split_offsets;
use polars_core::POOL;
use polars_utils::flatten;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::prelude::*;

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ClosedWindow {
    Left,
    Right,
    Both,
    None,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum StartBy {
    WindowBound,
    DataPoint,
    /// only useful if periods are weekly
    Monday,
}

impl Default for StartBy {
    fn default() -> Self {
        Self::WindowBound
    }
}

/// Based on the given `Window`, which has an
/// - every
/// - period
/// - offset
/// window boundaries are created. And every window boundary we search for the values
/// that fit that window by the given `ClosedWindow`. The groups are return as `GroupTuples`
/// together with the lower bound and upper bound timestamps. These timestamps indicate the start (lower)
/// and end (upper) of the window of that group.
///
/// If `include_boundaries` is `false` those `lower` and `upper` vectors will be empty.
pub fn groupby_windows(
    window: Window,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
    include_lower_bound: bool,
    include_upper_bound: bool,
    start_by: StartBy,
) -> (GroupsSlice, Vec<i64>, Vec<i64>) {
    let start = time[0];
    // the boundary we define here is not yet correct. It doesn't take 'period' into account
    // and it doesn't have the proper starting point. This boundary is used as a proxy to find
    // the proper 'boundary' in  'window.get_overlapping_bounds_iter'.
    let boundary = if time.len() > 1 {
        // +1 because left or closed boundary could match the next window if it is on the boundary
        let stop = time[time.len() - 1] + 1;
        Bounds::new_checked(start, stop)
    } else {
        let stop = start + 1;
        Bounds::new_checked(start, stop)
    };

    let size = if include_lower_bound || include_upper_bound {
        match tu {
            TimeUnit::Nanoseconds => window.estimate_overlapping_bounds_ns(boundary),
            TimeUnit::Microseconds => window.estimate_overlapping_bounds_us(boundary),
            TimeUnit::Milliseconds => window.estimate_overlapping_bounds_ms(boundary),
        }
    } else {
        0
    };
    let size_lower = if include_lower_bound { size } else { 0 };
    let size_upper = if include_upper_bound { size } else { 0 };
    let mut lower_bound = Vec::with_capacity(size_lower);
    let mut upper_bound = Vec::with_capacity(size_upper);

    let mut groups = match tu {
        TimeUnit::Nanoseconds => {
            Vec::with_capacity(window.estimate_overlapping_bounds_ns(boundary))
        }
        TimeUnit::Microseconds => {
            Vec::with_capacity(window.estimate_overlapping_bounds_us(boundary))
        }
        TimeUnit::Milliseconds => {
            Vec::with_capacity(window.estimate_overlapping_bounds_ms(boundary))
        }
    };
    let mut start_offset = 0;

    for bi in window.get_overlapping_bounds_iter(boundary, tu, start_by) {
        let mut skip_window = false;
        // find starting point of window
        while start_offset < time.len() {
            let t = time[start_offset];
            if bi.is_future(t, closed_window) {
                // the window is behind the time values.
                skip_window = true;
                break;
            }
            if bi.is_member(t, closed_window) {
                break;
            }
            start_offset += 1;
        }
        if skip_window {
            start_offset = start_offset.saturating_sub(1);
            continue;
        }
        if start_offset == time.len() {
            start_offset = start_offset.saturating_sub(1);
        }

        // find members of this window
        let mut i = start_offset;
        // start next iteration 1 index back because of boundary conditions.
        // e.g. "closed left" could match the next iteration, but did not this one.
        start_offset = start_offset.saturating_sub(1);

        // last value
        if i == time.len() - 1 {
            let t = time[i];
            if bi.is_member(t, closed_window) {
                if include_lower_bound {
                    lower_bound.push(bi.start);
                }
                if include_upper_bound {
                    upper_bound.push(bi.stop);
                }
                groups.push([i as IdxSize, 1])
            }
            continue;
        }

        let first = i as IdxSize;

        while i < time.len() {
            let t = time[i];
            if !bi.is_member(t, closed_window) {
                break;
            }
            i += 1;
        }
        let len = (i as IdxSize) - first;

        if include_lower_bound {
            lower_bound.push(bi.start);
        }
        if include_upper_bound {
            upper_bound.push(bi.stop);
        }
        groups.push([first, len])
    }
    (groups, lower_bound, upper_bound)
}

// this assumes that the starting point is alwa
pub(crate) fn groupby_values_iter_full_lookbehind(
    period: Duration,
    offset: Duration,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
    start_offset: usize,
) -> impl Iterator<Item = (IdxSize, IdxSize)> + TrustedLen + '_ {
    debug_assert!(offset.duration_ns() >= period.duration_ns());
    debug_assert!(offset.negative);

    let add = match tu {
        TimeUnit::Nanoseconds => Duration::add_ns,
        TimeUnit::Microseconds => Duration::add_us,
        TimeUnit::Milliseconds => Duration::add_ms,
    };

    let mut last_lookbehind_i = 0;
    let mut last = i64::MIN;
    time[start_offset..]
        .iter()
        .enumerate()
        .map(move |(mut i, lower)| {
            if *lower < last {
                panic!("index column of 'groupby_rolling' must be sorted in ascending order!")
            }
            last = *lower;
            i += start_offset;
            let lower = add(&offset, *lower);
            let upper = add(&period, lower);

            let b = Bounds::new(lower, upper);

            // we have a complete lookbehind so we know that `i` is the upper bound.
            // Safety
            // we are in bounds
            let slice = {
                #[cfg(debug_assertions)]
                {
                    &time[last_lookbehind_i..i]
                }
                #[cfg(not(debug_assertions))]
                {
                    unsafe { time.get_unchecked(last_lookbehind_i..i) }
                }
            };
            let offset = slice.partition_point(|v| !b.is_member(*v, closed_window));

            let lookbehind_i = offset + last_lookbehind_i;
            // -1 for window boundary effects
            last_lookbehind_i = lookbehind_i.saturating_sub(1);

            let mut len = i - lookbehind_i;
            if matches!(closed_window, ClosedWindow::Right | ClosedWindow::Both) {
                len += 1;
            }

            (lookbehind_i as IdxSize, len as IdxSize)
        })
}

// this one is correct for all lookbehind/lookaheads, but is slower
pub(crate) fn groupby_values_iter_window_behind_t(
    period: Duration,
    offset: Duration,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
) -> impl Iterator<Item = (IdxSize, IdxSize)> + TrustedLen + '_ {
    let add = match tu {
        TimeUnit::Nanoseconds => Duration::add_ns,
        TimeUnit::Microseconds => Duration::add_us,
        TimeUnit::Milliseconds => Duration::add_ms,
    };

    let mut lagging_offset = 0;
    let mut last = i64::MIN;
    time.iter().enumerate().map(move |(i, lower)| {
        if *lower < last {
            panic!("index column of 'groupby_rolling' must be sorted!")
        }
        last = *lower;
        let lower = add(&offset, *lower);
        let upper = add(&period, lower);

        let b = Bounds::new(lower, upper);
        if b.is_future(time[0], closed_window) {
            (0, 0)
        } else {
            // find starting point of window
            // we can start searching from lagging offset as that is the minimum boundary because data is sorted
            // and every iteration this boundary shifts right
            // we cannot use binary search as a window is not binary,
            // it is false left from the window, true inside, and false right of the window
            let mut count = 0;
            for &t in &time[lagging_offset..] {
                if b.is_member(t, closed_window) || lagging_offset + count == i {
                    break;
                }
                count += 1
            }
            if lagging_offset + count != i {
                lagging_offset += count;
            }

            // Safety
            // we just iterated over value i.
            let slice = unsafe { time.get_unchecked(lagging_offset..) };
            let len = slice.partition_point(|v| b.is_member(*v, closed_window));

            (lagging_offset as IdxSize, len as IdxSize)
        }
    })
}

// this one is correct for all lookbehind/lookaheads, but is slower
pub(crate) fn groupby_values_iter_partial_lookbehind(
    period: Duration,
    offset: Duration,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
) -> impl Iterator<Item = (IdxSize, IdxSize)> + TrustedLen + '_ {
    let add = match tu {
        TimeUnit::Nanoseconds => Duration::add_ns,
        TimeUnit::Microseconds => Duration::add_us,
        TimeUnit::Milliseconds => Duration::add_ms,
    };

    let mut lagging_offset = 0;
    let mut last = i64::MIN;
    time.iter().enumerate().map(move |(i, lower)| {
        if *lower < last {
            panic!("index column of 'groupby_rolling' must be sorted!")
        }
        last = *lower;
        let lower = add(&offset, *lower);
        let upper = add(&period, lower);

        let b = Bounds::new(lower, upper);

        for &t in &time[lagging_offset..] {
            if b.is_member(t, closed_window) || lagging_offset == i {
                break;
            }
            lagging_offset += 1;
        }

        // Safety
        // we just iterated over value i.
        let slice = unsafe { time.get_unchecked(lagging_offset..) };
        let len = slice.partition_point(|v| b.is_member(*v, closed_window));

        (lagging_offset as IdxSize, len as IdxSize)
    })
}

pub(crate) fn groupby_values_iter_full_lookahead(
    period: Duration,
    offset: Duration,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
    start_offset: usize,
    upper_bound: Option<usize>,
) -> impl Iterator<Item = (IdxSize, IdxSize)> + TrustedLen + '_ {
    let upper_bound = upper_bound.unwrap_or(time.len());
    debug_assert!(!offset.negative);

    let add = match tu {
        TimeUnit::Nanoseconds => Duration::add_ns,
        TimeUnit::Microseconds => Duration::add_us,
        TimeUnit::Milliseconds => Duration::add_ms,
    };

    let mut last = i64::MIN;
    time[start_offset..upper_bound]
        .iter()
        .enumerate()
        .map(move |(mut i, lower)| {
            if *lower < last {
                panic!("index column of 'groupby_rolling' must be sorted!")
            }
            last = *lower;
            i += start_offset;
            let lower = add(&offset, *lower);
            let upper = add(&period, lower);

            let b = Bounds::new(lower, upper);

            debug_assert!(i < time.len());
            let slice = unsafe { time.get_unchecked(i..) };
            let len = slice.partition_point(|v| b.is_member(*v, closed_window));

            (i as IdxSize, len as IdxSize)
        })
}

fn partially_check_sorted(time: &[i64]) {
    // check sortedness of a small subslice.
    if time.len() > 1 {
        assert!(time[..std::cmp::min(time.len(), 10)].windows(2).filter_map(|w| match w[0].cmp(&w[1]) {
            Ordering::Equal => None,
            t => Some(t)
        }).all_equal(), "Subslice check showed that the values in `groupby_rolling` were not sorted. Pleasure ensure the index column is sorted.");
    }
}

#[cfg(feature = "rolling_window")]
pub(crate) fn groupby_values_iter<'a>(
    period: Duration,
    offset: Duration,
    time: &'a [i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
) -> Box<dyn TrustedLen<Item = (IdxSize, IdxSize)> + 'a> {
    partially_check_sorted(time);
    // we have a (partial) lookbehind window
    if offset.negative {
        // only lookbehind
        if offset.nanoseconds() == period.nanoseconds() {
            let iter =
                groupby_values_iter_full_lookbehind(period, offset, time, closed_window, tu, 0);
            Box::new(iter)
        }
        // partial lookbehind
        else {
            let iter =
                groupby_values_iter_partial_lookbehind(period, offset, time, closed_window, tu);
            Box::new(iter)
        }
    } else {
        let iter =
            groupby_values_iter_full_lookahead(period, offset, time, closed_window, tu, 0, None);
        Box::new(iter)
    }
}

/// Different from `groupby_windows`, where define window buckets and search which values fit that
/// pre-defined bucket, this function defines every window based on the:
///     - timestamp (lower bound)
///     - timestamp + period (upper bound)
/// where timestamps are the individual values in the array `time`
pub fn groupby_values(
    period: Duration,
    offset: Duration,
    time: &[i64],
    closed_window: ClosedWindow,
    tu: TimeUnit,
) -> GroupsSlice {
    partially_check_sorted(time);
    let thread_offsets = _split_offsets(time.len(), POOL.current_num_threads());

    // we have a (partial) lookbehind window
    if offset.negative {
        if offset.duration_ns() >= period.duration_ns() {
            // lookbehind
            // window is within 2 periods length of t
            // ------t---
            // [------]
            if offset.duration_ns() < period.duration_ns() * 2 {
                let vals = thread_offsets
                    .par_iter()
                    .copied()
                    .map(|(base_offset, len)| {
                        let upper_bound = base_offset + len;
                        let iter = groupby_values_iter_full_lookbehind(
                            period,
                            offset,
                            &time[..upper_bound],
                            closed_window,
                            tu,
                            base_offset,
                        );
                        iter.map(|(offset, len)| [offset as IdxSize, len])
                            .collect_trusted::<Vec<_>>()
                    })
                    .collect::<Vec<_>>();
                flatten(&vals, Some(time.len()))
            }
            // window is completely behind t and t itself is not a member
            // ---------------t---
            //  [---]
            else {
                let iter =
                    groupby_values_iter_window_behind_t(period, offset, time, closed_window, tu);
                iter.map(|(offset, len)| [offset, len]).collect_trusted()
            }
        }
        // partial lookbehind
        // this one is still single threaded
        // can make it parallel later, its a bit more complicated because the boundaries are unknown
        // window is with -1 periods of t
        // ----t---
        //  [---]
        else {
            let iter =
                groupby_values_iter_partial_lookbehind(period, offset, time, closed_window, tu);
            iter.map(|(offset, len)| [offset, len]).collect_trusted()
        }
    } else {
        let vals = thread_offsets
            .par_iter()
            .copied()
            .map(|(base_offset, len)| {
                let lower_bound = base_offset;
                let upper_bound = base_offset + len;
                let iter = groupby_values_iter_full_lookahead(
                    period,
                    offset,
                    time,
                    closed_window,
                    tu,
                    lower_bound,
                    Some(upper_bound),
                );
                iter.map(|(offset, len)| [offset as IdxSize, len])
                    .collect_trusted::<Vec<_>>()
            })
            .collect::<Vec<_>>();
        flatten(&vals, Some(time.len()))
    }
}