1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
mod cache;
mod drop_duplicates;
mod executor;
mod explode;
mod ext_context;
mod filter;
mod groupby;
mod groupby_dynamic;
mod groupby_partitioned;
mod groupby_rolling;
mod join;
mod melt;
mod projection;
#[cfg(feature = "python")]
mod python_scan;
mod scan;
mod slice;
mod sort;
mod stack;
mod udf;
mod union;

use std::borrow::Cow;
use std::path::PathBuf;

pub use executor::*;
use polars_core::POOL;
use polars_plan::global::FETCH_ROWS;
use polars_plan::utils::*;
use rayon::prelude::*;

pub(super) use self::cache::*;
pub(super) use self::drop_duplicates::*;
pub(super) use self::explode::*;
pub(super) use self::ext_context::*;
pub(super) use self::filter::*;
pub(super) use self::groupby::*;
#[cfg(feature = "dynamic_groupby")]
pub(super) use self::groupby_dynamic::*;
pub(super) use self::groupby_partitioned::*;
#[cfg(feature = "dynamic_groupby")]
pub(super) use self::groupby_rolling::*;
pub(super) use self::join::*;
pub(super) use self::melt::*;
pub(super) use self::projection::*;
#[cfg(feature = "python")]
pub(super) use self::python_scan::*;
pub(super) use self::scan::*;
pub(super) use self::slice::*;
pub(super) use self::sort::*;
pub(super) use self::stack::*;
pub(super) use self::udf::*;
pub(super) use self::union::*;
use super::*;
use crate::physical_plan::state::StateFlags;

fn execute_projection_cached_window_fns(
    df: &DataFrame,
    exprs: &[Arc<dyn PhysicalExpr>],
    state: &ExecutionState,
) -> PolarsResult<Vec<Series>> {
    // We partition by normal expression and window expression
    // - the normal expressions can run in parallel
    // - the window expression take more memory and often use the same groupby keys and join tuples
    //   so they are cached and run sequential

    // the partitioning messes with column order, so we also store the idx
    // and use those to restore the original projection order
    #[allow(clippy::type_complexity)]
    // String: partition_name,
    // u32: index,
    // bool: flatten (we must run those first because they need a sorted group tuples.
    //       if we cache the group tuples we must ensure we cast the sorted onces.
    let mut windows: Vec<(String, Vec<(u32, bool, Arc<dyn PhysicalExpr>)>)> = vec![];
    let mut other = Vec::with_capacity(exprs.len());

    // first we partition the window function by the values they group over.
    // the groupby values should be cached
    let mut index = 0u32;
    exprs.iter().for_each(|phys| {
        index += 1;
        let e = phys.as_expression().unwrap();

        let mut is_window = false;
        for e in e.into_iter() {
            if let Expr::Window {
                partition_by,
                options,
                ..
            } = e
            {
                let groupby = format!("{:?}", partition_by.as_slice());
                if let Some(tpl) = windows.iter_mut().find(|tpl| tpl.0 == groupby) {
                    tpl.1.push((index, options.explode, phys.clone()))
                } else {
                    windows.push((groupby, vec![(index, options.explode, phys.clone())]))
                }
                is_window = true;
                break;
            }
        }
        if !is_window {
            other.push((index, phys))
        }
    });

    let mut selected_columns = POOL.install(|| {
        other
            .par_iter()
            .map(|(idx, expr)| expr.evaluate(df, state).map(|s| (*idx, s)))
            .collect::<PolarsResult<Vec<_>>>()
    })?;

    for mut partition in windows {
        // clear the cache for every partitioned group
        let mut state = state.split();

        // don't bother caching if we only have a single window function in this partition
        if partition.1.len() == 1 {
            state.flags.remove(StateFlags::CACHE_WINDOW_EXPR)
        } else {
            state.flags.insert(StateFlags::CACHE_WINDOW_EXPR);
        }

        partition.1.sort_unstable_by_key(|(_idx, explode, _)| {
            // negate as `false` will be first and we want the exploded
            // e.g. the sorted groups cd to be the first to fill the cache.
            !explode
        });

        for (index, _, e) in partition.1 {
            if e.as_expression()
                .unwrap()
                .into_iter()
                .filter(|e| matches!(e, Expr::Window { .. }))
                .count()
                == 1
            {
                state.flags.insert(StateFlags::CACHE_WINDOW_EXPR)
            }
            // caching more than one window expression is a complicated topic for another day
            // see issue #2523
            else {
                state.flags.remove(StateFlags::CACHE_WINDOW_EXPR)
            }

            let s = e.evaluate(df, &state)?;
            selected_columns.push((index, s));
        }
    }

    selected_columns.sort_unstable_by_key(|tpl| tpl.0);
    let selected_columns = selected_columns.into_iter().map(|tpl| tpl.1).collect();
    Ok(selected_columns)
}

pub(crate) fn evaluate_physical_expressions(
    df: &DataFrame,
    exprs: &[Arc<dyn PhysicalExpr>],
    state: &mut ExecutionState,
    has_windows: bool,
) -> PolarsResult<DataFrame> {
    let zero_length = df.height() == 0;
    let selected_columns = if has_windows {
        execute_projection_cached_window_fns(df, exprs, state)?
    } else {
        POOL.install(|| {
            exprs
                .par_iter()
                .map(|expr| expr.evaluate(df, state))
                .collect::<PolarsResult<_>>()
        })?
    };

    check_expand_literals(selected_columns, zero_length)
}

fn check_expand_literals(
    mut selected_columns: Vec<Series>,
    zero_length: bool,
) -> PolarsResult<DataFrame> {
    let first_len = selected_columns[0].len();
    let mut df_height = 0;
    let mut all_equal_len = true;
    {
        let mut names = PlHashSet::with_capacity(selected_columns.len());
        for s in &selected_columns {
            let len = s.len();
            df_height = std::cmp::max(df_height, len);
            if len != first_len {
                all_equal_len = false;
            }
            let name = s.name();
            if !names.insert(name) {
                return Err(PolarsError::Duplicate(
                    format!("Column with name: '{name}' has more than one occurrences").into(),
                ));
            }
        }
    }
    // If all series are the same length it is ok. If not we can broadcast Series of length one.
    if !all_equal_len {
        selected_columns = selected_columns
            .into_iter()
            .map(|series| {
                if series.len() == 1 && df_height > 1 {
                    Ok(series.new_from_index(0, df_height))
                } else if series.len() == df_height || series.len() == 0 {
                    Ok(series)
                } else {
                    Err(PolarsError::ComputeError(
                        format!(
                            "Series {series:?} does not match the DataFrame height of {df_height}",
                        )
                        .into(),
                    ))
                }
            })
            .collect::<PolarsResult<_>>()?
    }

    let df = DataFrame::new_no_checks(selected_columns);

    // a literal could be projected to a zero length dataframe.
    // This prevents a panic.
    let df = if zero_length {
        let min = df.get_columns().iter().map(|s| s.len()).min();
        if min.is_some() {
            df.head(min)
        } else {
            df
        }
    } else {
        df
    };
    Ok(df)
}