1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
use polars_core::prelude::*;
pub trait PhysicalIoExpr: Send + Sync {
fn evaluate(&self, df: &DataFrame) -> PolarsResult<Series>;
#[cfg(feature = "parquet")]
fn as_stats_evaluator(&self) -> Option<&dyn StatsEvaluator> {
None
}
}
#[cfg(feature = "parquet")]
pub trait StatsEvaluator {
fn should_read(&self, stats: &crate::parquet::predicates::BatchStats) -> PolarsResult<bool>;
}
#[cfg(feature = "parquet")]
pub(crate) fn arrow_schema_to_empty_df(schema: &ArrowSchema) -> DataFrame {
let columns = schema
.fields
.iter()
.map(|fld| Series::full_null(&fld.name, 0, &fld.data_type().into()))
.collect();
DataFrame::new_no_checks(columns)
}
#[cfg(any(
feature = "ipc",
feature = "parquet",
feature = "json",
feature = "ipc_streaming"
))]
pub(crate) fn apply_predicate(
df: &mut DataFrame,
predicate: Option<&dyn PhysicalIoExpr>,
parallel: bool,
) -> PolarsResult<()> {
if let (Some(predicate), false) = (&predicate, df.is_empty()) {
let s = predicate.evaluate(df)?;
let mask = s.bool().expect("filter predicates was not of type boolean");
if parallel {
*df = df.filter(mask)?;
} else {
*df = df._filter_seq(mask)?;
}
}
Ok(())
}