1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
use arrow::compute::concatenate::concatenate;
use arrow::io::parquet::read::statistics::{deserialize, Statistics};
use arrow::io::parquet::read::RowGroupMetaData;
use polars_core::prelude::*;
use crate::predicates::PhysicalIoExpr;
use crate::ArrowResult;
#[cfg_attr(debug_assertions, derive(Debug))]
pub struct ColumnStats(Statistics, Field);
impl ColumnStats {
pub fn dtype(&self) -> DataType {
self.1.data_type().clone()
}
pub fn null_count(&self) -> Option<usize> {
match self.1.data_type() {
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => None,
_ => {
Series::try_from(("", self.0.null_count.clone()))
.unwrap()
.sum()
}
}
}
pub fn to_min_max(&self) -> Option<Series> {
let max_val = &*self.0.max_value;
let min_val = &*self.0.min_value;
let dtype = DataType::from(min_val.data_type());
if dtype.is_numeric() || matches!(dtype, DataType::Utf8) {
let arr = concatenate(&[min_val, max_val]).unwrap();
let s = Series::try_from(("", arr)).unwrap();
if s.null_count() > 0 {
None
} else {
Some(s)
}
} else {
None
}
}
}
pub struct BatchStats {
schema: Schema,
stats: Vec<ColumnStats>,
}
impl BatchStats {
pub fn get_stats(&self, column: &str) -> polars_core::error::PolarsResult<&ColumnStats> {
self.schema.try_index_of(column).map(|i| &self.stats[i])
}
pub fn schema(&self) -> &Schema {
&self.schema
}
}
pub(crate) fn collect_statistics(
md: &[RowGroupMetaData],
arrow_schema: &ArrowSchema,
rg: Option<usize>,
) -> ArrowResult<Option<BatchStats>> {
let mut schema = Schema::with_capacity(arrow_schema.fields.len());
let mut stats = vec![];
for fld in &arrow_schema.fields {
let st = match rg {
None => deserialize(fld, md)?,
Some(rg) => deserialize(fld, &md[rg..rg + 1])?,
};
schema.with_column(fld.name.to_string(), (&fld.data_type).into());
stats.push(ColumnStats(st, Field::from(fld)));
}
Ok(if stats.is_empty() {
None
} else {
Some(BatchStats { schema, stats })
})
}
pub(super) fn read_this_row_group(
predicate: Option<&Arc<dyn PhysicalIoExpr>>,
file_metadata: &arrow::io::parquet::read::FileMetaData,
schema: &ArrowSchema,
rg: usize,
) -> PolarsResult<bool> {
if let Some(pred) = &predicate {
if let Some(pred) = pred.as_stats_evaluator() {
if let Some(stats) = collect_statistics(&file_metadata.row_groups, schema, Some(rg))? {
let should_read = pred.should_read(&stats);
if matches!(should_read, Ok(false)) {
return Ok(false);
} else if !matches!(should_read, Err(PolarsError::NotFound(_))) {
let _ = should_read?;
}
}
}
}
Ok(true)
}