1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
use hashbrown::hash_map::RawEntryMut;
use hashbrown::HashMap;
use rayon::prelude::*;

use super::*;
use crate::frame::groupby::hashing::{populate_multiple_key_hashmap, HASHMAP_INIT_SIZE};
use crate::frame::hash_join::{
    get_hash_tbl_threaded_join_mut_partitioned, get_hash_tbl_threaded_join_partitioned,
};
use crate::prelude::*;
use crate::utils::series::_to_physical_and_bit_repr;
use crate::utils::{_set_partition_size, split_df};
use crate::vector_hasher::{df_rows_to_hashes_threaded, this_partition, IdBuildHasher, IdxHash};
use crate::POOL;

/// Compare the rows of two DataFrames
pub(crate) unsafe fn compare_df_rows2(
    left: &DataFrame,
    right: &DataFrame,
    left_idx: usize,
    right_idx: usize,
) -> bool {
    for (l, r) in left.get_columns().iter().zip(right.get_columns()) {
        if !(l.get_unchecked(left_idx) == r.get_unchecked(right_idx)) {
            return false;
        }
    }
    true
}

pub(crate) fn create_probe_table(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher>> {
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || vec![idx],
                                |v| v.push(idx),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

fn create_build_table_outer(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher>> {
    // Outer join equivalent of create_build_table() adds a bool in the hashmap values for tracking
    // whether a value in the hash table has already been matched to a value in the probe hashes.
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || (false, vec![idx]),
                                |v| v.1.push(idx),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

/// Probe the build table and add tuples to the results (inner join)
#[allow(clippy::too_many_arguments)]
fn probe_inner<F>(
    probe_hashes: &UInt64Chunked,
    hash_tbls: &[HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher>],
    results: &mut Vec<(IdxSize, IdxSize)>,
    local_offset: usize,
    n_tables: u64,
    a: &DataFrame,
    b: &DataFrame,
    swap_fn: F,
) where
    F: Fn(IdxSize, IdxSize) -> (IdxSize, IdxSize),
{
    let mut idx_a = local_offset as IdxSize;
    for probe_hashes in probe_hashes.data_views() {
        for &h in probe_hashes {
            // probe table that contains the hashed value
            let current_probe_table =
                unsafe { get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables) };

            let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                let idx_b = idx_hash.idx;
                // Safety:
                // indices in a join operation are always in bounds.
                unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
            });

            if let Some((_, indexes_b)) = entry {
                let tuples = indexes_b.iter().map(|&idx_b| swap_fn(idx_a, idx_b));
                results.extend(tuples);
            }
            idx_a += 1;
        }
    }
}

pub(crate) fn get_offsets(probe_hashes: &[UInt64Chunked]) -> Vec<usize> {
    probe_hashes
        .iter()
        .map(|ph| ph.len())
        .scan(0, |state, val| {
            let out = *state;
            *state += val;
            Some(out)
        })
        .collect()
}

pub fn _inner_join_multiple_keys(
    a: &mut DataFrame,
    b: &mut DataFrame,
    swap: bool,
) -> (Vec<IdxSize>, Vec<IdxSize>) {
    // we assume that the b DataFrame is the shorter relation.
    // b will be used for the build phase.

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);
    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(|| {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .flat_map(|(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;
                let mut results =
                    Vec::with_capacity(probe_hashes.len() / POOL.current_num_threads());
                let local_offset = offset;
                // code duplication is to hoist swap out of the inner loop.
                if swap {
                    probe_inner(
                        &probe_hashes,
                        hash_tbls,
                        &mut results,
                        local_offset,
                        n_tables,
                        a,
                        b,
                        |idx_a, idx_b| (idx_b, idx_a),
                    )
                } else {
                    probe_inner(
                        &probe_hashes,
                        hash_tbls,
                        &mut results,
                        local_offset,
                        n_tables,
                        a,
                        b,
                        |idx_a, idx_b| (idx_a, idx_b),
                    )
                }

                results
            })
            .unzip()
    })
}

#[cfg(feature = "private")]
pub fn private_left_join_multiple_keys(
    a: &DataFrame,
    b: &DataFrame,
    // map the global indices to [chunk_idx, array_idx]
    // only needed if we have non contiguous memory
    chunk_mapping_left: Option<&[ChunkId]>,
    chunk_mapping_right: Option<&[ChunkId]>,
) -> LeftJoinIds {
    let mut a = DataFrame::new_no_checks(_to_physical_and_bit_repr(a.get_columns()));
    let mut b = DataFrame::new_no_checks(_to_physical_and_bit_repr(b.get_columns()));
    _left_join_multiple_keys(&mut a, &mut b, chunk_mapping_left, chunk_mapping_right)
}

pub fn _left_join_multiple_keys(
    a: &mut DataFrame,
    b: &mut DataFrame,
    // map the global indices to [chunk_idx, array_idx]
    // only needed if we have non contiguous memory
    chunk_mapping_left: Option<&[ChunkId]>,
    chunk_mapping_right: Option<&[ChunkId]>,
) -> LeftJoinIds {
    // we should not join on logical types
    debug_assert!(!a.iter().any(|s| s.dtype().is_logical()));
    debug_assert!(!b.iter().any(|s| s.dtype().is_logical()));

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    let results = POOL.install(move || {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(move |(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                let len = probe_hashes.len() / POOL.current_num_threads();
                let mut result_idx_left = Vec::with_capacity(len);
                let mut result_idx_right = Vec::with_capacity(len);
                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for &h in probe_hashes {
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((_, indexes_b)) => {
                                result_idx_left
                                    .extend(std::iter::repeat(idx_a).take(indexes_b.len()));
                                result_idx_right.extend(indexes_b.iter().copied().map(Some))
                            }
                            // only left values, right = null
                            None => {
                                result_idx_left.push(idx_a);
                                result_idx_right.push(None);
                            }
                        }
                        idx_a += 1;
                    }
                }

                finish_left_join_mappings(
                    result_idx_left,
                    result_idx_right,
                    chunk_mapping_left,
                    chunk_mapping_right,
                )
            })
            .collect::<Vec<_>>()
    });
    flatten_left_join_ids(results)
}

#[cfg(feature = "semi_anti_join")]
pub(crate) fn create_build_table_semi_anti(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, (), IdBuildHasher>> {
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, (), IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || (),
                                |_| (),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

#[cfg(feature = "semi_anti_join")]
pub(crate) fn semi_anti_join_multiple_keys_impl<'a>(
    a: &'a mut DataFrame,
    b: &'a mut DataFrame,
) -> impl ParallelIterator<Item = (IdxSize, bool)> + 'a {
    // we should not join on logical types
    debug_assert!(!a.iter().any(|s| s.dtype().is_logical()));
    debug_assert!(!b.iter().any(|s| s.dtype().is_logical()));

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_build_table_semi_anti(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(move || {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .flat_map(move |(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;
                let mut results =
                    Vec::with_capacity(probe_hashes.len() / POOL.current_num_threads());
                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for &h in probe_hashes {
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((_, _)) => results.push((idx_a, true)),
                            // only left values, right = null
                            None => results.push((idx_a, false)),
                        }
                        idx_a += 1;
                    }
                }

                results
            })
    })
}

#[cfg(feature = "semi_anti_join")]
pub fn _left_anti_multiple_keys(a: &mut DataFrame, b: &mut DataFrame) -> Vec<IdxSize> {
    semi_anti_join_multiple_keys_impl(a, b)
        .filter(|tpls| !tpls.1)
        .map(|tpls| tpls.0)
        .collect()
}

#[cfg(feature = "semi_anti_join")]
pub fn _left_semi_multiple_keys(a: &mut DataFrame, b: &mut DataFrame) -> Vec<IdxSize> {
    semi_anti_join_multiple_keys_impl(a, b)
        .filter(|tpls| tpls.1)
        .map(|tpls| tpls.0)
        .collect()
}

/// Probe the build table and add tuples to the results (inner join)
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn probe_outer<F, G, H>(
    probe_hashes: &[UInt64Chunked],
    hash_tbls: &mut [HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher>],
    results: &mut Vec<(Option<IdxSize>, Option<IdxSize>)>,
    n_tables: u64,
    a: &DataFrame,
    b: &DataFrame,
    // Function that get index_a, index_b when there is a match and pushes to result
    swap_fn_match: F,
    // Function that get index_a when there is no match and pushes to result
    swap_fn_no_match: G,
    // Function that get index_b from the build table that did not match any in A and pushes to result
    swap_fn_drain: H,
) where
    // idx_a, idx_b -> ...
    F: Fn(IdxSize, IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
    // idx_a -> ...
    G: Fn(IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
    // idx_b -> ...
    H: Fn(IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
{
    let mut idx_a = 0;

    // vec<ca>
    for probe_hashes in probe_hashes {
        // ca
        for probe_hashes in probe_hashes.data_views() {
            // chunk slices
            for &h in probe_hashes {
                // probe table that contains the hashed value
                let current_probe_table =
                    unsafe { get_hash_tbl_threaded_join_mut_partitioned(h, hash_tbls, n_tables) };

                let entry = current_probe_table
                    .raw_entry_mut()
                    .from_hash(h, |idx_hash| {
                        let idx_b = idx_hash.idx;
                        // Safety:
                        // indices in a join operation are always in bounds.
                        unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                    });

                match entry {
                    // match and remove
                    RawEntryMut::Occupied(mut occupied) => {
                        let (tracker, indexes_b) = occupied.get_mut();
                        *tracker = true;
                        results.extend(indexes_b.iter().map(|&idx_b| swap_fn_match(idx_a, idx_b)))
                    }
                    // no match
                    RawEntryMut::Vacant(_) => results.push(swap_fn_no_match(idx_a)),
                }
                idx_a += 1;
            }
        }
    }

    for hash_tbl in hash_tbls {
        hash_tbl.iter().for_each(|(_k, (tracker, indexes_b))| {
            // remaining unmatched joined values from the right table
            if !*tracker {
                results.extend(indexes_b.iter().map(|&idx_b| swap_fn_drain(idx_b)))
            }
        });
    }
}

pub fn _outer_join_multiple_keys(
    a: &mut DataFrame,
    b: &mut DataFrame,
    swap: bool,
) -> Vec<(Option<IdxSize>, Option<IdxSize>)> {
    // we assume that the b DataFrame is the shorter relation.
    // b will be used for the build phase.

    let size = a.height() + b.height();
    let mut results = Vec::with_capacity(size);

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let mut hash_tbls = create_build_table_outer(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    // probe the hash table.
    // Note: indexes from b that are not matched will be None, Some(idx_b)
    // Therefore we remove the matches and the remaining will be joined from the right

    // branch is because we want to only do the swap check once
    if swap {
        probe_outer(
            &probe_hashes,
            &mut hash_tbls,
            &mut results,
            n_tables,
            a,
            b,
            |idx_a, idx_b| (Some(idx_b), Some(idx_a)),
            |idx_a| (None, Some(idx_a)),
            |idx_b| (Some(idx_b), None),
        )
    } else {
        probe_outer(
            &probe_hashes,
            &mut hash_tbls,
            &mut results,
            n_tables,
            a,
            b,
            |idx_a, idx_b| (Some(idx_a), Some(idx_b)),
            |idx_a| (Some(idx_a), None),
            |idx_b| (None, Some(idx_b)),
        )
    }
    results
}