1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
use crate::prelude::*;
use crate::series::IsSorted;
use crate::utils::{concat_df_unchecked, slice_offsets, CustomIterTools, NoNull};
use crate::POOL;

fn slice_take(
    total_rows: IdxSize,
    n_rows_right: IdxSize,
    slice: Option<(i64, usize)>,
    inner: fn(IdxSize, IdxSize, IdxSize) -> IdxCa,
) -> IdxCa {
    match slice {
        None => inner(0, total_rows, n_rows_right),
        Some((offset, len)) => {
            let (offset, len) = slice_offsets(offset, len, total_rows as usize);
            inner(offset as IdxSize, (len + offset) as IdxSize, n_rows_right)
        }
    }
}

fn take_left(total_rows: IdxSize, n_rows_right: IdxSize, slice: Option<(i64, usize)>) -> IdxCa {
    fn inner(offset: IdxSize, total_rows: IdxSize, n_rows_right: IdxSize) -> IdxCa {
        let mut take: NoNull<IdxCa> = (offset..total_rows)
            .map(|i| i / n_rows_right)
            .collect_trusted();
        take.set_sorted_flag(IsSorted::Ascending);
        take.into_inner()
    }
    slice_take(total_rows, n_rows_right, slice, inner)
}

fn take_right(total_rows: IdxSize, n_rows_right: IdxSize, slice: Option<(i64, usize)>) -> IdxCa {
    fn inner(offset: IdxSize, total_rows: IdxSize, n_rows_right: IdxSize) -> IdxCa {
        let take: NoNull<IdxCa> = (offset..total_rows)
            .map(|i| i % n_rows_right)
            .collect_trusted();
        take.into_inner()
    }
    slice_take(total_rows, n_rows_right, slice, inner)
}

impl DataFrame {
    fn cross_join_dfs(
        &self,
        other: &DataFrame,
        slice: Option<(i64, usize)>,
        parallel: bool,
    ) -> PolarsResult<(DataFrame, DataFrame)> {
        let n_rows_left = self.height() as IdxSize;
        let n_rows_right = other.height() as IdxSize;
        let Some(total_rows) = n_rows_left.checked_mul(n_rows_right) else {
            return Err(PolarsError::ComputeError("Cross joins would produce more rows than fits into 2^32.\n\
            Consider comping with polars-big-idx feature, or set 'streaming'.".into()))
        };

        // the left side has the Nth row combined with every row from right.
        // So let's say we have the following no. of rows
        // left: 3
        // right: 4
        //
        // left take idx:   000011112222
        // right take idx:  012301230123

        let create_left_df = || {
            // Safety:
            // take left is in bounds
            unsafe { self.take_unchecked(&take_left(total_rows, n_rows_right, slice)) }
        };

        let create_right_df = || {
            // concatenation of dataframes is very expensive if we need to make the series mutable
            // many times, these are atomic operations
            // so we choose a different strategy at > 100 rows (arbitrarily small number)
            if n_rows_left > 100 || slice.is_some() {
                // Safety:
                // take right is in bounds
                unsafe { other.take_unchecked(&take_right(total_rows, n_rows_right, slice)) }
            } else {
                let iter = (0..n_rows_left).map(|_| other);
                concat_df_unchecked(iter)
            }
        };
        let (l_df, r_df) = if parallel {
            POOL.install(|| rayon::join(create_left_df, create_right_df))
        } else {
            (create_left_df(), create_right_df())
        };
        Ok((l_df, r_df))
    }

    #[doc(hidden)]
    /// used by streaming
    pub fn _cross_join_with_names(
        &self,
        other: &DataFrame,
        names: &[String],
    ) -> PolarsResult<DataFrame> {
        let (mut l_df, r_df) = self.cross_join_dfs(other, None, false)?;
        l_df.get_columns_mut().extend_from_slice(&r_df.columns);

        l_df.get_columns_mut()
            .iter_mut()
            .zip(names)
            .for_each(|(s, name)| {
                if s.name() != name {
                    s.rename(name);
                }
            });
        Ok(l_df)
    }

    /// Creates the cartesian product from both frames, preserves the order of the left keys.
    pub fn cross_join(
        &self,
        other: &DataFrame,
        suffix: Option<&str>,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<DataFrame> {
        let (l_df, r_df) = self.cross_join_dfs(other, slice, true)?;

        _finish_join(l_df, r_df, suffix)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::df;

    #[test]
    fn test_cross_join() -> PolarsResult<()> {
        let df_a = df![
            "a" => [1, 2],
            "b" => ["foo", "spam"]
        ]?;

        let df_b = df![
            "b" => ["a", "b", "c"]
        ]?;

        let out = df_a.cross_join(&df_b, None, None)?;
        let expected = df![
            "a" => [1, 1, 1, 2, 2, 2],
            "b" => ["foo", "foo", "foo", "spam", "spam", "spam"],
            "b_right" => ["a", "b", "c", "a", "b", "c"]
        ]?;

        assert!(out.frame_equal(&expected));

        Ok(())
    }
}