1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
use super::*;
use crate::frame::groupby::IntoGroupsProxy;
impl CategoricalChunked {
pub fn unique(&self) -> PolarsResult<Self> {
let cat_map = self.get_rev_map();
if self.can_fast_unique() {
let ca = match &**cat_map {
RevMapping::Local(a) => {
UInt32Chunked::from_iter_values(self.logical().name(), 0..(a.len() as u32))
}
RevMapping::Global(map, _, _) => {
UInt32Chunked::from_iter_values(self.logical().name(), map.keys().copied())
}
};
unsafe {
let mut out =
CategoricalChunked::from_cats_and_rev_map_unchecked(ca, cat_map.clone());
out.set_fast_unique(true);
Ok(out)
}
} else {
let ca = self.logical().unique()?;
unsafe {
Ok(CategoricalChunked::from_cats_and_rev_map_unchecked(
ca,
cat_map.clone(),
))
}
}
}
pub fn n_unique(&self) -> PolarsResult<usize> {
if self.can_fast_unique() {
Ok(self.get_rev_map().len())
} else {
self.logical().n_unique()
}
}
pub fn value_counts(&self) -> PolarsResult<DataFrame> {
let groups = self.logical().group_tuples(true, false).unwrap();
let logical_values = unsafe {
self.logical()
.clone()
.into_series()
.agg_first(&groups)
.u32()
.unwrap()
.clone()
};
let mut values = self.clone();
*values.logical_mut() = logical_values;
let mut counts = groups.group_count();
counts.rename("counts");
let cols = vec![values.into_series(), counts.into_series()];
let df = DataFrame::new_no_checks(cols);
df.sort(["counts"], true)
}
}