1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use std::ops::AddAssign;

use arrow::array::PrimitiveArray;
use arrow::types::NativeType;
use num::Float;

use crate::trusted_len::TrustedLen;
use crate::utils::CustomIterTools;

pub fn ewm_mean<I, T>(xs: I, alpha: T, adjust: bool, min_periods: usize) -> PrimitiveArray<T>
where
    I: IntoIterator<Item = Option<T>>,
    I::IntoIter: TrustedLen,
    T: Float + NativeType + AddAssign,
{
    if alpha.is_one() {
        return ewm_mean_alpha_equals_one(xs, min_periods);
    }

    let one_sub_alpha = T::one() - alpha;

    let mut opt_mean = None;
    let mut non_null_cnt = 0usize;

    let wgt = alpha;
    let mut wgt_sum = if adjust { T::zero() } else { T::one() };

    xs.into_iter()
        .map(|opt_x| {
            if let Some(x) = opt_x {
                non_null_cnt += 1;

                let prev_mean = opt_mean.unwrap_or(x);

                wgt_sum = one_sub_alpha * wgt_sum + wgt;

                let curr_mean = prev_mean + (x - prev_mean) * wgt / wgt_sum;

                opt_mean = Some(curr_mean);
            }
            match non_null_cnt < min_periods {
                true => None,
                false => opt_mean,
            }
        })
        .collect_trusted()
}

/// To prevent numerical instability (and as a slight optimization), we
/// special-case ``alpha=1``.
fn ewm_mean_alpha_equals_one<I, T>(xs: I, min_periods: usize) -> PrimitiveArray<T>
where
    I: IntoIterator<Item = Option<T>>,
    I::IntoIter: TrustedLen,
    T: Float + NativeType + AddAssign,
{
    let mut non_null_count = 0usize;
    xs.into_iter()
        .map(|opt_x| {
            if opt_x.is_some() {
                non_null_count += 1;
            }
            match non_null_count < min_periods {
                true => None,
                false => opt_x,
            }
        })
        .collect_trusted()
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_ewm_mean_without_null() {
        let xs = vec![Some(1.0f32), Some(2.0f32), Some(3.0f32)];

        for adjust in [false, true] {
            let result = ewm_mean(xs.clone().into_iter(), 0.5, adjust, 0);

            let expected = match adjust {
                false => PrimitiveArray::from([Some(1.0f32), Some(1.5f32), Some(2.25f32)]),
                true => PrimitiveArray::from([
                    Some(1.0f32),
                    Some(1.6666667f32), // <-- pandas: 1.66666667
                    Some(2.42857143),
                ]),
            };
            assert_eq!(result, expected);
        }
    }

    #[test]
    fn test_ewm_mean_with_null() {
        let xs = vec![Some(1.0f32), None, Some(1.0f32), Some(1.0f32)].into_iter();
        let result = ewm_mean(xs, 0.5, false, 2);
        let expected = PrimitiveArray::from([None, None, Some(1.0f32), Some(1.0f32)]);
        assert_eq!(result, expected);

        let xs = vec![None, None, Some(1.0f32), Some(1.0f32)].into_iter();
        let result = ewm_mean(xs, 0.5, false, 1);
        let expected = PrimitiveArray::from([None, None, Some(1.0f32), Some(1.0f32)]);
        assert_eq!(result, expected);

        let xs = vec![
            Some(2.0f32),
            Some(3.0f32),
            Some(5.0f32),
            Some(7.0f32),
            None,
            None,
            None,
            Some(4.0f32),
        ];
        let result = ewm_mean(xs, 0.5, false, 0);
        let expected = PrimitiveArray::from([
            Some(2.0f32),
            Some(2.5f32),
            Some(3.75f32),
            Some(5.375f32),
            Some(5.375f32),
            Some(5.375f32),
            Some(5.375f32),
            Some(4.6875f32),
        ]);
        assert_eq!(result, expected);

        let xs = vec![
            None,
            None,
            Some(5.0f32),
            Some(7.0f32),
            None,
            Some(2.0f32),
            Some(1.0f32),
            Some(4.0f32),
        ];
        let unadjusted_result = ewm_mean(xs.clone().into_iter(), 0.5, false, 1);
        let unadjusted_expected = PrimitiveArray::from([
            None,
            None,
            Some(5.0f32),
            Some(6.0f32),
            Some(6.0f32),
            Some(4.0f32),
            Some(2.5f32),
            Some(3.25f32),
        ]);
        assert_eq!(unadjusted_result, unadjusted_expected);
        let adjusted_result = ewm_mean(xs.clone().into_iter(), 0.5, true, 1);
        let adjusted_expected = PrimitiveArray::from([
            None,
            None,
            Some(5.0f32),
            Some(6.33333333f32),
            Some(6.33333333f32),
            Some(3.85714286f32),
            Some(2.3333335f32), // <-- pandas: 2.33333333
            Some(3.19354839f32),
        ]);
        assert_eq!(adjusted_result, adjusted_expected);

        let xs = vec![
            None,
            Some(1.0f32),
            Some(5.0f32),
            Some(7.0f32),
            None,
            Some(2.0f32),
            Some(1.0f32),
            Some(4.0f32),
        ]
        .into_iter();
        let result = ewm_mean(xs, 0.5, true, 1);
        let expected = PrimitiveArray::from([
            None,
            Some(1.0f32),
            Some(3.66666667f32),
            Some(5.57142857f32),
            Some(5.57142857f32),
            Some(3.66666667),
            Some(2.2903228f32), // <-- pandas: 2.29032258
            Some(3.15873016f32),
        ]);
        assert_eq!(result, expected);
    }
}