1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use crate::error::Error;
use super::super::uleb128;
use super::{super::ceil8, HybridEncoded};
#[derive(Debug, Clone)]
pub struct Decoder<'a> {
values: &'a [u8],
num_bits: usize,
}
impl<'a> Decoder<'a> {
pub fn new(values: &'a [u8], num_bits: usize) -> Self {
Self { values, num_bits }
}
#[inline]
pub fn num_bits(&self) -> usize {
self.num_bits
}
}
impl<'a> Iterator for Decoder<'a> {
type Item = Result<HybridEncoded<'a>, Error>;
#[inline] fn next(&mut self) -> Option<Self::Item> {
if self.num_bits == 0 {
return None;
}
if self.values.is_empty() {
return None;
}
let (indicator, consumed) = match uleb128::decode(self.values) {
Ok((indicator, consumed)) => (indicator, consumed),
Err(e) => return Some(Err(e)),
};
self.values = &self.values[consumed..];
if self.values.is_empty() {
return None;
};
if indicator & 1 == 1 {
let bytes = (indicator as usize >> 1) * self.num_bits;
let bytes = std::cmp::min(bytes, self.values.len());
let (result, remaining) = self.values.split_at(bytes);
self.values = remaining;
Some(Ok(HybridEncoded::Bitpacked(result)))
} else {
let run_length = indicator as usize >> 1;
let rle_bytes = ceil8(self.num_bits);
let (result, remaining) = self.values.split_at(rle_bytes);
self.values = remaining;
Some(Ok(HybridEncoded::Rle(result, run_length)))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::super::bitpacked;
#[test]
fn basics_1() {
let bit_width = 1usize;
let length = 5;
let values = vec![
2, 0, 0, 0, 0b00000011, 0b00001011, ];
let mut decoder = Decoder::new(&values[4..6], bit_width);
let run = decoder.next().unwrap();
if let HybridEncoded::Bitpacked(values) = run.unwrap() {
assert_eq!(values, &[0b00001011]);
let result = bitpacked::Decoder::<u32>::try_new(values, bit_width, length)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result, &[1, 1, 0, 1, 0]);
} else {
panic!()
};
}
#[test]
fn basics_2() {
let bit_width = 1;
let values = vec![
3, 0, 0, 0, 0b00000101, 0b11101011, 0b00000010, ];
let expected = &[1, 1, 0, 1, 0, 1, 1, 1, 0, 1];
let mut decoder = Decoder::new(&values[4..4 + 3], bit_width);
let run = decoder.next().unwrap();
if let HybridEncoded::Bitpacked(values) = run.unwrap() {
assert_eq!(values, &[0b11101011, 0b00000010]);
let result = bitpacked::Decoder::<u32>::try_new(values, bit_width, 10)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result, expected);
} else {
panic!()
};
}
#[test]
fn basics_3() {
let bit_width = 1;
let length = 8;
let values = vec![
2, 0, 0, 0, 0b00010000, 0b00000001,
];
let mut decoder = Decoder::new(&values[4..4 + 2], bit_width);
let run = decoder.next().unwrap();
if let HybridEncoded::Rle(values, items) = run.unwrap() {
assert_eq!(values, &[0b00000001]);
assert_eq!(items, length);
} else {
panic!()
};
}
}